API Reference
EmBuddy Core
Source code in src/embuddy/core.py
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 |
|
__call__(docs, cache=True)
Shortcut for EmBuddy.embed
Source code in src/embuddy/core.py
75 76 77 |
|
__init__(model_name)
A buddy for using text embeddings.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model_name |
str
|
SentenceTransformer model used for embedding |
required |
Source code in src/embuddy/core.py
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 |
|
build_ann_index(nndescent_kwargs=None)
Builds the Approximate Nearest Neighbors (ANN) index
Parameters:
Name | Type | Description | Default |
---|---|---|---|
nndescent_kwargs |
Optional[Dict[str, Any]]
|
Optional kwargs to pass to NNDescent. Defaults to None. |
None
|
Raises:
Type | Description |
---|---|
NNDescentHyperplaneError
|
If ANN can't be built due to small data. |
Source code in src/embuddy/core.py
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
|
build_umap(umap_kwargs=None, return_array=True)
Builds a 2D projection of the embeddings with UMAP default settings except metric="cosine".
Parameters:
Name | Type | Description | Default |
---|---|---|---|
umap_kwargs |
Optional[Dict[str, Any]]
|
Custom UMAP kwargs. Defaults to None. |
None
|
return_array |
bool
|
Return the UMAP array. Defaults to True. |
True
|
Source code in src/embuddy/core.py
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 |
|
embed(docs, cache=True, show_progress_bar=True)
Embed documents.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
docs |
Union[str, List[str]]
|
A string or list of strings to embed |
required |
cache |
bool
|
Whether to cache embedding results. Defaults to True. |
True
|
show_progress_bar |
bool
|
Show progress bar for sentence-transformers. Defaults to True. |
True
|
Returns:
Type | Description |
---|---|
np.ndarray
|
np.ndarray: Embeddings of input documents. |
Source code in src/embuddy/core.py
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
|
load(path)
classmethod
Load a previously saved EmBuddy from disk
Returns:
Name | Type | Description |
---|---|---|
EmBuddy |
'EmBuddy'
|
A loaded instance of Embuddy |
Source code in src/embuddy/core.py
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 |
|
nearest_neighbors(docs, k=10)
Find the nearest neighbors (i.e. most similar) from cached docs for the input documents.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
docs |
Union[str, List[str]]
|
Docs to find nearest neighbors of. |
required |
k |
int
|
Number of nearest neighbors. Defaults to 10. |
10
|
Raises:
Type | Description |
---|---|
IndexNotBuiltError
|
If |
Returns:
Type | Description |
---|---|
List[List[Tuple[int, str, float]]]
|
List[List[Tuple[int, str, float]]]: For each document, a list of tuples containing the document index, document string, and distance for the nearest neighbors for each input doc. Sorted by distance. |
Source code in src/embuddy/core.py
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
|
nearest_neighbors_vector(query_vector, k=10)
Find the nearest neighbors (i.e. most similar) from cached docs of the input vectors.
You can use this to find similar documents to an arbitrary vector -- e.g. a vector for a document that doesn't exist, or the mean vector for a collection of documents.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
query_vector |
np.ndarray
|
An array of vectors to find the nearest neighbors for. |
required |
k |
int
|
Number of nearest neighbors. Defaults to 10. |
10
|
Raises:
Type | Description |
---|---|
IndexNotBuiltError
|
If |
Returns:
Type | Description |
---|---|
List[List[Tuple[int, str, float]]]
|
List[List[Tuple[int, str, float]]]: For each vector, a list of tuples containing the document index, document string, and distance for the nearest neighbors for each input doc. Sorted by distance. |
Source code in src/embuddy/core.py
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 |
|
save(path, overwrite=True)
Save the current state of EmBuddy to disk.
Embeddings and Docs arrays are saved and compressed using zarr.
The ANN Index, if it exists, is saved using joblib with zstd
compression.
Note that this is a directory containing the required data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
path |
Union[str, Path]
|
Location to save EmBuddy data |
required |
overwrite |
bool
|
Whether to overwrite existing data. Defaults to True. |
True
|
Returns:
Type | Description |
---|---|
zarr.Group
|
zarr.Group: Group object containing an |
zarr.Group
|
embeddings and a |
Source code in src/embuddy/core.py
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 |
|
Errors
IndexNotBuiltError
Bases: ValueError
, AttributeError
Exception raised when attempting to find nearest neighbors before the ANN index is built.
Source code in src/embuddy/errors.py
1 2 3 4 5 6 |
|
NNDescentHyperplaneError
Bases: Exception
Exception raised when NNDescent can't find a hyperplane.
Usually occurs with small data.
Source code in src/embuddy/errors.py
9 10 11 12 13 14 15 |
|